Pilot testing enhanced biological phosphorus removal at Chicago WRPs using existing infrastructure

Joseph Kozak, PhD, PE Supervising Environmental Research Scientist

September 24, 2012

Overview

- In an effort to examine the effectiveness of enhanced biological phosphorus removal, demonstration projects were initiated at two plants with a goal to reach 1 mg/L TP in effluent using current infrastructure
 - Stickney WRP
 - Started in October 2011
 - Restarted in May 2012
 - Calumet WRP
 - Started in April 2012

Stickney Background

- Serves 2.3 million people
- Single stage nitrification activated sludge plant
- Design avg flow of 1,200 MGD and design max of 1,400 MGD
 - 2011 avg: 608 MGD
 - 2011 max: 1,250 MGD
- Primary effluent is mixture of Imhoff and preliminary settling tanks
- Converted Battery (Battery D)
 - 8 tanks, 4 pass plug flow
 - 50.7 MG (6.3 MG per tank)
 - 2011 avg HRT: 8.7 hrs
 - 415 ft per pass
 - 400 foot RAS channel
 - 1,600 foot mixing and feed channel
 - Aeration basins are of similar size
- Coarse bubblers in RAS/mixing/feed channel and spiral roll fine bubble diffusers in aeration tanks

Stickney Objectives for 2012

- Phase I
 - Compare control Battery A to EBPR convert Battery D
- Phase II
 - Look at EBPR Battery efficiency under different stress conditions
 - low flow, high flow, low P loads, and high P loads
 - Look at diurnal variation of bio P removal in Battery D
- Phase III
 - Modify length of anaerobic zone
 - Modify RAS return
- Phase IV (incorporated)
 - Use past and Phase I-III data to evaluate the effect of EBPR on nitrification
 - Run nitrification rate tests on EBPR mixed liquor and control mixed liquor
 - Install NH, probe at end of Battery D tank to get real time and continuous information on nitrification in tank

Stickney Battery D sampling locations

Also collecting daily composites of Imhoff and Preliminary effluents, RAS, and effluents from each battery

Parameters

Parameter	Container Type	Extent of Filtration	Volume (mL)
TSS and VSS	Plastic	Unfiltered	250
NH ₃ -N	Plastic	Coarse	250
NO ₃ -N and NO ₂ -N	Plastic	Coarse	250
TKN and TP	Plastic	Unfiltered	250
Mg and K	Plastic	Unfiltered	250
Soluble Mg and K	Plastic	0.45-micron	250
COD	Plastic	Unfiltered	250
Soluble COD	Plastic	0.45-micron	250
Ortho-P and sol P	Plastic	0.45 micron	250
Nitrification rate	Plastic	Unfiltered	3,000

Also operational data such as battery flows, SRTs, RAS flows, F:M, and HRTs

- Seeing P reduction in converted battery relative to control
- Nitrification not inhibited
- BOD:TP>20 most of the time
- NO₃-N and DO still a little too high in entering anaerobic zone → want both close to zero
- Did see sharp increase in DO in aerobic zone after transition (~ 2 mg/L) much but not all of the time
- See relatively higher abundance of PAOs in converted battery based on limited data

Stickney future investigation for 2012

- Investigating different mixing technologies to achieve complete denitifrication and near-zero DOs
- Examining VFAs and rbCOD in PE and mixed liquor entering anaerobic zone
- Sol P in WAS→ensure no secondary release
- Install continuous DO and NO3 monitors in RAS/ mixing/feed channel and anaerobic zone

Calumet Background

- Serves 1.1 million people
- Single stage nitrification activated sludge plant
- Design avg flow of 354 MGD and design max of 430 MGD
 - 2011 avg: 263 MGD
 - 2011 max: 488 MGD
- Converted Battery (Battery E1)
 - 10 tanks, single pass plug flow
 - 16.2 MG (2 MG per tank)
 - 2011 avg HRT: 7.1 hrs
 - 425 ft per pass
 - 254 foot RAS channel
 - 580 foot mixing and feed channel
 - All batteries are of different size except the control battery E2
- Coarse bubblers in RAS/mixing/feed channel and spiral roll final bubble diffusers in aeration tanks

Objectives

- Phase I
 - Review plant and battery operational and influent data/ information
- Phase II
 - Background characterization in RAS and mixing channel of Battery E1
- Phase III
 - Compare control Battery E2 to EBPR converted Battery E1

Also collecting daily composites of primary, RAS, and effluents from each battery

	Fl	ow	Influent T	Primary efflue P TP	·	/ P %TP rem	Primary effluent BOD5:TP
Year	m	gd	mg/L	mg/L	mg/L	%	unitless
	2005	224	6.44	6.12	3.78	41.4	16.3
	2006	283	4.85	4.58	2.46	49.3	19.4
	2007	273	4.29	3.88	2.16	49.6	21.9
	2008	286	5.21	4.44	2.65	49.1	19.0
	2009	291	5.19	4.77	3.17	39.0	19.2
	2010	238	6.14	5.71	3.75	38.9	16.8
	2011	263	5.76	4.91	2.90	49.7	17.8

- RAS and mixing channel DOs and NO₃-N too high and air needed turn down (Phase I)
- Not seeing the same P removal as Stickney
- Nitrification not inhibited
- BOD:TP<20
- NO₃-N and DO still too high in entering anaerobic zone → want both close to zero
- Did not see sharp increase in DO in aerobic zone after transition
- PAO abundance is inconclusive

Calumet future investigations in 2012

- Investigating different mixing technologies to achieve complete denitifrication and near-zero DOs
- Examining VFAs in PE and mixed liquor entering anaerobic zone
- Initiate examination of the affect of fermentation and rbCOD addition to anaerobic phase of EBPR process through lab tests

Questions?

Joseph Kozak
Metropolitan Water Reclamation District
Monitoring and Research Department
708.588.3780
joseph.kozak@mwrd.org